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A new type of boundary layer in a rapidly rotating gas 
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Gaseous flow in a pie-shaped cylinder of infinite length rotating about the apex is 
considered. The horizontal flow is induced either by the temperature distribution or 
by the source/sink distribution on the walls 8 = constant. It is found that along the 
vertical walls 0 = constant the l& boundary layer is formed, where E is the Ekman 
number. Although the equation governing the above boundary layer is very similar 
to that of the Ekman layer, i t  is a new type of boundary layer which may be called 
the buoyancy layer. Along the wall on which r is constant thermal boundary layers 
very similar to  the Stewartson layers are found to be formed. The role of these layers 
is to mediate the temperature jump. These layers disappear in the incompressible 
limit. 

1. Introduction and summary 
The dynamics of a rotating gas has been developed for the gas centrifuge (Sakurai 

& Matsuda 1974; Nakayama & Usui 1974; for complete references see Ratz 1978; 
Soubbaramayer 1979). Since researchers were interested in the flow in a rotating 
circular cylinder, they assumed an axisymmetry, except in the work of Matsuda, 
Sakurai & Takeda (1975), who studied the effect of the non-axisymmetric distribution 
of the source/sink in a circular cylinder. On the other hand Kuo & Veronis (1971) 
studied an incompressible flow induced by a source/sink in a pie-shaped rotating basin 
with a free surface. They found that the e-layer is formed along the western boundary 
(0 = constant) and the €4 layer along the r = constant wall, where 8 = l&/F and F 
is the Froude number. It would be interesting to see the compressible couterpart of 
the Kuo-Veronis flow. Matsuda, Nakagawa & Takeda (1981) considered a non- 
axisymmetric compressible flow, although they restricted themselves to  a circular 
cylinder with inclined bottom surface. It was found that the bottom topography has 
a minor effect on the flow. 

I n  the present paper we consider a compressible flow in a pie-shaped cylinder. I n  
order to avoid undue complexity, we assume the cylinder to be infinitely long and 
all flow variables to be independent of the axial coordinate z. The cylinder rotates 
about the apex r = 0 so rapidly that the radial-pressure scale height is comparable 
to the cylinder radius L (see figure 1 ) .  Since we wish to compare the flow field in the 
pie-shaped cylinder with that in an axisymmetric circular cylinder with end plates, 
both cases will be dealt with together. 

Before a detailed discussion is given using the full equations, let us summarize the 
present result. Figure 2 shows the ( r ,  z )  cross-section of the circular cylinder and the 
( r ,@)  cross-section of the pie-shaped cylinder. The compressible flow in a rapidly 
rotating circular cylinder has been investigated by many workers (see references cited 
above) and is well understood. 

Along the top and the bottom cover of the axisymmetric cylinder, the Ekman layer 
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FIGTJRE 1. (a )  Schematic representation of a rapidly rotating crrcular cylinder. (6) Infinitely 
long pie-shaped cylinder rotating about the apex. 
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FIGURE 2 (a )  The ( r ,  z )  cross-section of the circular cylinder. Along the top and the bottom cover 
the h* Ekman layers are formed, while the Zd and .@ Stewartson layers are generated along the 
sidewall. The rest is the inner core. ( b )  The ( r ,  0) cross-section of the pie-shaped cylinder. Along the 
walls 0 = constant the l& buoyancy layers are formed. Along the outer wall the Zd and I& thermal 
layers are produced. The rest is the inner core. 

with thickness E i  is formed, while the Stewartson E i  and E f  layers are formed along 
the sidewall (see figure 2a) .  In  the pie-shaped cylinder three kinds of boundary layer 
are found (see figure 2 b ) .  Along the wall 8 = constant a boundary layer with thickness 
@ is formed.Let us call this layer a buoyancy layer. The equation governing the layer 
is 

--+ 4hr6egti = 0, (1.1) 
a44 

ar4 
where quantities with a hat represent the boundary-layer values, 11 is the stretchcd 
azimuthal coordinate, h a compressibility parameter and eR the normalized density 
(see $2 for details). Here we use a cylindrical coordinate system rotating with the 
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cylinder, and (u, v, w )  are the velocity components in the ( r ,  0,z)-directions. Equation 
( 1 . 1 )  is essentially the same as the governing equation for the Ekman layer: 

a46 
ar’4 
-+4(E+hr2)&& = 0, 

where 7’ is a stretched coordinate of z .  Note that the buoyancy layer disappears in 
the limit h -+ 0, while the Ekman layer remains. A buoyancy layer on a vertical wall 
in an axially stratified Boussinesq fluid was discussed by Barcilon & Pedlosky (1967). 
Our buoyancy layer is a compressible counterpart of their layer. 

On the outer wall r = L,  a thermal boundary layer with thickness Ei is formed. 
The governing equation for it is 

where quantities with a bar denote the boundary-layer variables, and < a radial 
stretched coordinate. Equation (1.3) is also very similar to the equation for the 
Stewartson Ei laver as 

if B is replaced by z. A close similarity between (1.3) and (1.4) is obvious. It should 
be noticed that the a thermal layer disappears in the incompressible limit, i.e. h + 0, 
while the Stewartson layer still exists. I n  the inner core, all quantities are functions 
only of r .  Therefore the role of the above thermal layer is to mediate the discrepancy 
of the inner temperature Ti(r = L )  and the wall temperature T!,(O). 

These two equations (1.3) and (1.4) are actually not independent. In  fact they are 
two limiting cases of a unified equation: 

A boundary layer described by (1.5) may be called a generalized Stewartson Ei layer, 
which is a combination of a conventional Stewartson layer and our thermal layer. 

Figure 3 illustrates the antisymmetric flows for both the circular cylinder and 
the pie-shaped cylinder. I n  the case of the circular cylinder the top cover rotates 
slightly more slowly than the bottom. The gas in the inner core rotates with the mean 
angular velocity of the top and the bottom cover, i.e. vi = i (vT + vB). In  order to match 
a no-slip condition at the top and the bottom, the Ekman layers are formed. I n  the 
Ekman layers (&, 6) form what is called an Ekman spiral, whose driving force is the 
Coriolis force. Through the continuity equation the axial velocity component zi, of 
order @ is induced. It approaches the axial velocity wi in the inner core a t  the outer 
boundary of the Ekman layer. This mechanism is called the Ekman pumping. Since 
ui is of order E in the inner core, the fluid pumped a t  the top Ekman layer flows axially 
and is sucked in a t  the bottom Ekman layer. This fluid is recirculated to the top 
through the sidewall Stewartson layer. 

A similar antisymmetric flow pattern is realized when the temperature of the top 
cover is kept slightly higher than the bottom while they rotate with the same angular 
speed. This is called a thermally driven flow, while the above ease is called a 
mechanically driven one. I n  the inner eorc an azimuthal flow called a thermal wind 
is established. The azimuthal velocity vi of the thermal wind is a function of z .  In  
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FIGKJRE 3. (a )  Schematic representation of a mechanically/therma,lly driven antisymmetric flow in 
the rotating cylinder. A vertical flow of order Ek is generated in the inner core by the Ekman 
pumping mechanism. This flow recirculates through the Ei Stewaztson layer. A closed circulation 
of order Z& is induced in the Stewartson layer for a thermally driven case. ( b )  Schematic 
representation of a thermally driven antisymmetric flow in the rotating pie-shaped cylinder. An 
azimuthal flow of order @ is induced in the inner core by the buoyancy pumping mechanism. 

order to satisfy the no-slip condition at the sidewall r = L,  a closed circulation is 
induced in the Stewartson layer, as is shown in figure 3(a ) .  

Now let us consider a pie-shaped cylinder. As is shown in figure 3(b ) ,  the 
temperature T,, of the wall 6' = 8, is kept slightly higher than Two of the wall 8 = 0. 
In the inner core, the temperature depends on r only. It turns out that  

= +(Two+Twl). Therefore there must be thermal la,yers at the walls. I n  the 
boundary layer a t  6' = 8, a centripetal flow is induced by a buoyancy force, while 
a centrifugal flow is established in the layer a t  8 = 0. The driving force of these flows 
is a buoyancy force, and therefore these boundary layers can be called the buoyancy 
layers. 

I n  the buoyancy layer (&, p )  play a similar role to (&a)  in the Ekman layer, and 
6 plays the role of &. An inner flow vi of order l& is excited by the buoyancy pumping 
mechanism. The inner flow recirculates through the sidewall thermal layer. 

If the sidewall r = L has a temperature distribution, a closed circulation is 
produced in order to match the temperature; this situation is shown in figure 3 ( b ) .  
These situations are very similar to the circular-cylinder case. 

Figure 4 shows the symmetric flow, which is sometimes called the externally 
driven flow or the sourcesink flow. The analysis of the symmetric flow in the circular 
cylinder was given by Matsuda et al. (1975). Let us summarize the results. If one 
assumes the source/sink distribution a t  the top and the bottom cover to be wT and 
wB, the axial flow wi = $(w, + wB) is established in the inner core. An azimuthal flow 
vi is also excited by the radial pressure gradient, and is called a geostrophic wind. 
A horizontal transport of the fluid occurs only through the top and the bottom Ekman 
layers, as shown in figure 4 ( a ) .  

I n  the case of the pie-shaped cylinder let us assume a source/sink distribution vwo 
and v,, at the walls 8 = 0 and 8 = 8,. The source/sink flow velocities are assumed 
to be of order h;. In  the inner core an azimuthal flow vi = ~ ( V , ~ + V , ~ )  of order I$ is 
established, and the horizontal transport occurs through the l8 buoyancy layers. I n  
the present case there is no flow corresponding to the geostrophic wind, although an 
excess temperature is induced in the inner core. 
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FIGURE 4. (a )  Schematic representation of an externally driven symmetric (source/sink flow) in the 
circular cylinder. (b )  Same as (a )  except for the pie-shaped cylinder. 

Although we will not discuss it in detail, it is clear that the l$ Stewartson layer 
in the circular cylinder has its counterpart, namely the @ thermal layer, in the 
pie-shaped cylinder. 

The close similarity between the flows in the circular cylinder and the pie-shaped 
cylinder has been discussed so far. Nevertheless there is a difference. As can be easily 
seen from (1.1)-(1.4), the buoyancy layer and the thermal layer in the pie-shaped 
cylinder disappear in the limit h --t 0, i.e. the incompressible limit. On the other hand 
the Ekman layer and the Stewartson layer exist for both incompressible and 
compressible fluid. 

2. Basic equations 

rotating gas are written in the rotating frame as 
The linearized non-dimensional equations describing a steady motion of rapidly 

divq+G,ru = 0, (2.1) 

where 

= 
G, az eR 3 az 

E 

ER 
- dhru = -AT, 

P = p + T ,  

i a  lav aw 
r ar r a e  aZ divq =--(ru)+--+--, q = (u,V,w), 
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eR = exp {+Go(r2- 1)). (2.10) 

Axisymmetric versions of (2.1)-(2.10) are given in Matsuda & Takeda (1978), in 
which Go in their equation (2.4) should be taken away. "on-axisymmctric parts wcre 
discussed in Matsuda et al. (1975). Thc length is normalized by thc cylinder radius 
L ,  and the speed by the peripheral speed LR, where R is an angular speed of the 
cylinder. Other quantities M ,  R, To, v ,  y and I'r are the molecular weight of the gas, 
the gas constant, the mean temperature, the kinematic viwosity, the ratio of specific 
heats, and the Prandtl number respectively. A parameter Go characterizing the 
system is nearly the syuarc of rotational Mach number, and is assumed to be of' the 
order of unity. The Ekman number E is assumed to  be sufficiently small that  a 
boundary-layer approximation is valid. The compressibility parameter h is o f  the 
order of unity. 

The pie-shaped cylinder is restricted by three walls: 0 = 0, 0 = 8, and r = 1. The 
boundary conditions applied on these three walls are 

u = w = 0, v = vwo(r), 7' = Two(r) (0 = O ) ,  (2.11) 

u = w = 0,  v = wwl(r), T = Twl(r) (0 = 0,), (2.12) 

u = v = w = 0, T = Tw2(8) ( r  =: 1 ) .  (2.13) 

vwo and vwl are assumed to be of order ,!$ in order to  make the problem tractable. 

3. Inner core 
Far from the walls the effect of viscosity can be neglocted, and such a region is 

called the inner core. The quantities in the inner core are denoted by the suffix i. 
Inspection of (2.5) leads to the conclusion that u is of order h? in the inner core. As 
was discussed in $ 1 ,  the order of magnitude of v is B in the present treatment. 
Therefore quantities in the inner core can be scaled as follows: 

u = E u i ,  v = = B v i ,  P = P  1) T = T  1) p = p .  1' (3.1) 

Neglecting z-dependence, (2.1)-(2.6) reduce to 

i avi 
= 0, -- 

r 88 

i ap,  
r71+-- = 0,  

Go ar 

i au, 
~ , r  ae = 0, ~- 

1 

ER, 
- 4hrui = - A q ,  

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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From (3.2)-(3.6) we conclude that all physical variables in the inner core are 
functions only of r as far as the lowest order is concerned. The density perturbation 
pi does not play a primary role and will not be discussed further. 

It is interesting to compare the present conclusion with that in Matsuda et al. (1975), 
who considered non-axisymmetric flow in a circular cylinder with &dependent 
boundary conditions on end covers. They concluded that the flow in the Ekman layer 
should not have &dependence. The 0-dependence of the boundary conditions on the 
end covers was mediated through a viscous effect in the inner core. I n  the present 
problem, on the other hand, the &dependence is applied on vertical walls. The flow 
in the inner core does not have &dependence because i t  is mediated through boundary 
layers. Therefore the effect of viscosity in the inner core can be neglected. If we neglect 
&dependence in the work by Matsuda et al. (1975) we reach the same conclusion as 
in the present paper. 

4. The I$ buoyancy layer 
layer along the wall 6' = 0. Requiring the radial velocity 

to be of order unity, the inspection of the energy equation (2.5) leads to the conclusion 
that the thickness of the buoyancy layer is of order ,@. Then let us scale the 
boundary-layer quantities as follows : 

Let us consider the 

u = 6 ,  v = @ a ,  T = F ,  P = P ,  O = E i q .  (4.1) 

The substitution of (4.1) into (2.1)-(2.5) leads to 

i a  i aa 

aP 
a7 
- _  - 0, 

(4.3) 

(4.4) 

(4.5) 

From (4.4) we see that P depends only on r .  Demanding that 'hatted' quantities 
approach the respective physical quantities in the inner core, we conclude that 

Differentiating (4.3) with respect to q twice, and substituting (4.5) into the result, 

(4.7) 
a46 

we obtain 
-+44hr6e&ti = 0. h4 

where CT = h&k, and A ,  and A, are unknown functions of r to be determined later. 
From the boundary condition ti = 0 a t  q = 0 we can rewrite (4.8) as 
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Substituting (4.9) into (4.3), we have an expression €or p as 
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The thermal boundary conditions are p = Two a t  7 = 0 and 
these conditions we have 

= q a t  7 + CQ. Using 

4ihLl,--- = T (r) (4.11) 
1 ap, 

Gor ar wo ' 

(4.12) 

(4.13) 

Now we have expressions €or fi and p. By integrating (4.2) with respect to 7, we 
can decide 4. After lengthy calculations we have 

1 [ (1  + Gor2) A ,  + [( - 1 + i) e(-l-t)UV - ( - 1 - i) e(-l+{)'V 1 a = - -  
2 a  

where the condition 4 + vi at 7 + 00, is used. The boundary condition for v a t  the 
wall is v = vwo at r,~ = 0. This condition leads to  

2u (4.15) 

At the other boundary 8 = 8, the coordinate should be stretched as 8, - 8 = Ei. 
The equations corresponding to (4.9), (4.1 l), (4.13)-(4.15) are 

6 = C,(y) [e(-l-Og? - e(-1+0$7 1, (4.16) 

2 a  (4.20) 

5. Inner flow 

by subtracting (4.17) from (4.11) to  yield 
I n  the inner core all variables do not depend on 8, therefore we can eliminate 

x, = A , - C ,  = Two - Gl 
4ih2 
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Eliminating wi in a similar manner from (4.15) and (4.20), we have an equation for 
X, = A , + C ,  as 

dX, 1-Gor2 a 
X,+,(vw,-uw1) = 0. (5.2) dr 2r zr 

Integration of (5.2) yieids 
P l  

X, = ihbi exp ( -+Gor2) J ' exp (+G0s2) (uwo(s)--uw1(s)) ds. (5 .3)  
0 

It is easy to  derive 

+$ihh-i exp ( -+GOT2) exp ($Gos2) (uwo-uWl)ds, (5.4) 
A - 

8ihi 1 -  

cr, = - Two-Tw1 +$ihir$ exp ( -$Gor2) exp ($Gos2) (uwo-wwl)ds. (5.5) 8ihi 

By adding (4.15) and (4.20), we have an expression for vi as 

The first term on the right-hand side of (5.6) represents an antisymmetric flow (see 
figure 3 b ) ,  while the second term represents the symmetric one (see figure 4b). A 
thermally driven flow corresponds to the former, and a source/sink flow to the latter. 

Other quantities in the inner core are easily obtained: 

q ( r )  = +(Tw,+Tw,)-2ih~X,, (5 .7)  

ap, 
ar 
- = -God& 

l d  
4hr2sR dr ui(r) = ( r W  

The first and second terms on the right-hand side of (5.7) are due to the antisymmetric 
and symmetric flows respectively. From (5.6) and (5.7) the statements given in $1 
are easily derived. 

6. The sidewall l& thermal layer 
If there is no source/sink distribution a t  the sidewall r = 1 then X, must be zero 

at r = 1 since the integrand in (5.3) represents a mass flux. Equation (5.7) implies 
that the inner temperature q ( r  = 1) is the mean of Two(l) and Twl(l). If the 
temperature of the sidewall has a distribution such that T,, = Tw,(B), then there must 
be a thermal boundary layer. 

I n  the following we derive the boundary-layer equation (1.5), retaining z- 
dependence. Expecting the layer to be a l& layer, we can scale physical quantities 
as follows: 

u=l&u, V = V ,  W = W ,  P = l & P ,  T = T ,  I-r=h'kc. (6.1) 

Substituting (6.1) into the basic equations and retaining the lowest terms, we have 
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A cross-differentiation of (6.3) and (6.4) eliminates p to give 

(6.5) 

where (6.2) is used. By cross-differentiating (6.4) and (6.5) to eliminate P, inserting 
(6.6) and integrating the resultant equation twice with respect to 5, we have 

a -  aw 
- ( (T+2hB)-2h-  = 0. aZ a0 

The continuity equation (6.2) can be written as 

where (6.6) has been used. 
Eliminating 8 and @ in favour of from (6.7)-(6.9), we obtain 

(6.10) 

ISG, is 0(1), eR can be considered to be constant in the layer, and (6.10) reduces 
to (1.5). 

The method of solution of (1.3) is essentially the same as that of (1.4), and is well 
known (see e.g. Matsuda 1977). Even if eB is retained, i t  is possible to solve the 
equation (Bark & Bark 1976; Durivault & Louvet 1976). In  the present paper we 
do not repeat it. 

The role of the thermal layer is twofold. First i t  mediates the temperature jump 
discussed above. As a result, a closed circulation whose flux is O ( a )  is generated, as 
is shown in figure 3 ( b ) .  Secondly fluid is rechannelled from the bottom buoyancy layer 
to the top one; the magnitude of the flux is O(l&). These situations are also parallel 
to the case in the circular cylinder, and will not be discussed in detail. 

The derivation of the governing equation of the @ thermal layer can be obtained 
in a similar manner to that above, and will not be discussed here. 

7. Discussion 
In  the present paper a compressible counterpart IS the Kuo-Veronis flow is 

investigated and new kinds of boundary layer are discovered. Kuo & Veronis (1971) 
pointed out that the topology of contours of geostrophic wind is important in deciding 
the nature of the flow. A geostrophic wind blows along an equal-depth line in the 
case of incompressible fluid with a free surface. If all the contours are closed, a 
geostrophic wind of order unity can blow. On the other hand, if none of the contours 
are closed, such as in the case of the pie-shaped basin, the flow is very weak and a 
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\ 
E3 and Ek detached shear layer 

PICURE 5 .  The ( T ,  0) cross-section of an off-axially rotating circular cylinder. The rotation axis is 
represented by x , and the cylinder axis by + . The dotted circles show detached shear layers. Only 
within the inner dotted circle can a geostrophic and/or thermal wind of order unity blow. 

la 
FIGURE 6. The ( T ,  0) cross-section of a truncated doughnut-shaped centrifuge. 

phenomenon called westward intensification can be observed. Matsuda et al. (1981) 
investigated a gradual transition between the two extreme cases stated above. 

Flows of compressible rotating fluid can also be understood in terms of the topology 
of the geostrophic contour. The geostrophic contour is nothing but a circle whose 
centre is the rotation axis in the compressible fluid. All geostrophic contours are closed 
in the circular cylinder considered in many papers, while none of them are closed in 
the pie-shaped cylinder. 

It would be interesting to see an intermediate case. As an example let us consider 
a circular cylinder whose axis does not coincide with the rotation axis (see figure 5). 
A geostrophic wind (and a thermal wind as well) can blow only within the inner dotted 
circle, where all geostrophic contours are closed. I n  the region between the outer wall 
and the outer dotted circle is a dead-water region where only weak flow is possible. 
The dotted circles represent the I& and Ea detached shear layers, whose character 
depends on the thermal boundary condition of the outer wall. A precise analysis of 
such flows is out of the scope of the present paper. 

The present result may have some practical application. A conventional gas 
centrifuge for the enrichment of uranium is a rapidly rotating circular cylinder. If 
a counter-current is induced by the thermal, mechanical and/or external mechanism, 
the efficiency of the separation is generally proportional to the length of the cylinder 
and the fourth power of the peripheral speed. Considering these, we could construct 
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a truncated doughnut-shaped centrifuge or a conventional cylindrical centrifuge with 
radial walls in it. The counter-current is produced by the mechanism discussed above 
(see figure 6). The technical feasibility of such a centrifuge is, however, out of the 
scope of the present paper. 

The authors wish to thank Prof. T. Sakurai for his comments, and a referee who 
suggested a unification of (1.3) and (1.4). 
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